
Smart eLab - volume 8, anno 2016

Networking

Setup of a redundant network storage system. A
legacy approach.†

Andrea Lora,a Giuseppe Nantista,a and Augusto Pifferi.a

In order to provide an affordable network storage for general purpose servers, we setup a
system that is able to share NFS resources avoiding single point of failure. This architecture is
now used as a storage for our email server. The goal is achieved using opensource software
and different vendor storages.

Keywords: HA storage, DRBD, NFS, ZFS, iSCSI.

1 INTRODUCTION

When providing a general purpose server the first goal to
achieve is to avoid that a single fault on a component of the
system can cause loss of data or, at least, long time of unavaila-
bility of the system. Server that offer those services must be de-
signed to work on more physical machines, located in different
IDCs, running different instances of the service, but offering sa-
me data to clients. This can be obtained by replicating every
single server and assuring that in every moment data contained
in the first server are the same of those contained in other.

However this approach can limit the overall scalability of
the system, so the only way to get both replicated service and
mirrored storage is to separate the application and the stora-
ge layer. The main advantages of this structure are two: high
scalability, in fact it is possible to add other storage in order
to create a clustered pool of resources; single maintenance is
needed, no matter how many services use the infrastructure;
servers are easier to manage, because data are kept outside.

1.1 Overview

This paper will propose a possible implementation of this sce-
nario, using Linux as the operating system for the network sto-
rage servers, iSCSI1 as the network storage protocol used to
access different SANs from storage servers, DRBD as the repli-
cation engine, Corosync and Pacemaker as the clustering and
resource management daemons used by network storage sy-
stem servers, ZFS as the local file system and NFS2–7 as the
shared access protocol. This kind of cluster is often referred as
Active Passive - Shared Nothing architecture.

The described infrastructure is shown in Fig. 1

a Istituto di Cristallografia, C.N.R., via Salaria km 29,300 - Monterotondo, Italia

Creative Commons Attribuzione - Non commerciale - Condividi allo
stesso modo 4.0 Internazionale
† Rapporto tecnico IC-RM 2016/02 protocollato in data 14/04/2016 n. 658

Fig. 1 Overview of the architecture

1.2 Hardware
Implementing an active/passive cluster means we have two

(or more) machines configured to do the same job. Only one of
the machines is actually serving the resources, while the others
are put in stand-by, ready to take over the service in case the
primary get some kind of failures. We’ll cover details of our
configuration in section 2.

1.3 Network Layer
Nodes need to talk each other to keep them synched and

serving data to clients. We also need a floating IP which will be
assigned to the active server. The configuration of the virtual IP
is explained in the section 7.

1.4 Block storage layer
There are three main storage networking standard for linking

data storage facilities, those are iSCSI, Fibre Channel and Infi-
niband. Both Fibre Channel and Infiniband require dedicated

Istituto di Cristallografia Smart eLab ISSN 2282-2259 1

https://doi.org/10.30441/smart-elab.v8i0.174

network hardware. The only protocol that allows the use of ge-
neric hardware such as network switches and cards is iSCSI. It
also permits opensource implementation of the protocol stack.

We used three storage systems, a Syneto Unified Storage, a
self assembled storage based on Illumos operating system, run-
ning Nexentastor and a HP Lefthand P4000. Then we configu-
red pairs on LUN of the same dimension on two storages, and
accessed those LUN from the network storage servers.

1.5 Replication system layer

To avoid SPOFs we need to be sure that all the data is sto-
red in (at least) two location. This will avoid data loss in case
of failure of the block storage. We chose DRBD as replication
engine. We’ll cover details about it in section 4.

1.6 File system layer

Since DRBD is seen by the OS as a block device we needed
to choose a file system suitable for hosting data. ZFS was our
choice, due to its excellent records in data storage and powerful
capabilities. Implementation of ZFS on Linux requires some ef-
forts in the configuration due the fact it’s not tightly integrated
in the OS. We’ll cover ZFS details in section 5.

1.7 Shared access layer

After creating the file system we need some means to access
it from remote machines. Industry standard to allow access of
remote file system is NFS. There was no reason to go against it,
in order to follow a legacy approach. We’ll cover NFS details in
section 5.

1.8 Orchestration

Due to the clustered nature of this stack cluster/orchestra-
tion tools were needed. Pacemaker and Corosync were used
as cluster suite. Although it’s possible to command corosync/-
pacemaker through the crm command line utility, we used the
Linux Cluster Management Console (LCMC) to do most of the
work. The presence of a GUI allow to get at a glance overview
of cluster status. Additional customization was made to activa-
te STONITH mechanisms. We’ll cover cluster details in section
7.

1.9 Monitoring

The fault tolerance capabilities of this kind of stack don’t
mean that we simply forget it because it works. We implemen-
ted some custom script to take analytics of the performances of
cluster nodes and setup some alerts accordingly. We’ll cover the
details is section 8.

1.10 Backup

Cluster nodes are always seen a single entity. The fact that
data is redundant doesn’t mean that it’s guaranteed to be safe.
A simple rm –rf can (and will) destroy data on the active and
passive node at the same time. The passive is not the backup of
the active, therefore backup strategies need to be implemented
to avoid data loss. We’ll cover details about backup in section
8.

2 Hardware

The cluster consist in 3 Virtual Machines. Two are the acti-
ve/passive nodes of the NFS server, one is a very light instance
acting as a quorum node. The fat nodes are equipped with 4
virtual CPU, 8GB of RAM, a bunch of disk space (16GB). The
thin node is just 1 CPU, 512GB of RAM and 4GB of disk space.

The virtual machines are spread between two ESX systems.
One is a fully fledged VMware Cluster hosted on an HP Blade
System, the other is an HP G5 Server. The HP Blade System has
attached a HP Lefthand P4000 as storage system, while the G5
has a Syneto Unified Storage. Both the storages offer a 1TB raw
LUN accessible via ISCSI from the OS of the virtual machines,
and are also in charge of hosting the data of the disks of the
Virtual Machines we used.

Network side we configured 3 different networks and VLANs
accordingly, one for NFS share, one for Replication/Heartbeat,
one for ISCSI. At present the VMware Cluster hosts one fat node
and the thin (quorum) node, while the ESX standalone G5 hosts
the second fat note.

Please note that this configuration isn’t truly SPOF free, be-
cause in case of complete shutdown of the VMware cluster, the
last node will not be able to take over the job due to the lo-
st quorum. Simply move the quorum machine elsewhere and
you’ll reach full SPOF free configuration.

After the configuration of the virtual machines we installed
Ubuntu 12.04 Server on each server. The Ubuntu choice was
due the fact that PPA repositories were available for the zf-
sonlinux project, an essential part for the system, and the LTS
support from Canonical.

3 Block Storage Layer

After installing the OS on the fat nodes we enabled access to
the ISCSI resources installing the iscsi-initiator-utils via apt-get,
then we proceed with the discover of target:

2 Smart eLab ISSN 2282-2259 Istituto di Cristallografia

iscsiadm -m discovery -t st -p ip_of_portal

After that we should log in to the portal

iscsiadm -m node - target_name -p ip_of_portal -l

And configure automatic login at boot

iscsiadm -m node -T target_name -p ip_of_portal --op update -n node.startup -v automatic

Through the use of dmesg or with fdisk –l we should now
see the presence of a new block device into the OS. In our case
our LUNs were 1TB large. It’s important that the LUNs size is
the same for both the fat nodes. Failure to do so may cause
problems with the replication.

4 Replication System Layer

Due to our design requirements we needed that the LUNs
were perfectly synchronized, every time, any time. The soft-
ware that allow to reach this goal was the Distributed Replica-
ted Block Device DRBD. We can understand it as network based
RAID-1 (mirror). DRBD offers asynchronous (A mode), semi-
synchronous (B mode) and synchronous (C mode) replication.
A DRBD device is seen from the OS as a standard block device,
which can be manipulated like any other: from the OS point of
view a DRBD device is just another hard disk. DRBD consists in
two components: one runs as a daemon, it uses a couple of tcp

port to ensure bidirectional communication, the other is a ker-
nel loadable module. DRBD can be used without orchestration
tools, but that won’t be useful to achieve HA because you need
to manually control primary/secondary promotion.

In order to install DRBD we first install the package trough
apt-get

apt-get install drbd8-utils

After the installation of DRBD we need to create a resource
for it. A resource is the block device DRBD will offer to the
OS. In the resource definition there will be present the physical
block device where DRBD will write. Take into account that
DNS names and IP must be configured accordingly with your
network topology. We used ip in the configuration, but we also
edited our /etc/hosts to provide coherent information. Rely on
DNS to resolve the hostname is not advisable due the possible
failure of the service.

resource r0 {

protocol B;

startup {

degr-wfc-timeout 0;

}

net {

max-epoch-size 8000;

max-buffers 8000;

unplug-watermark 8000;

cram-hmac-alg sha1;

shared-secret my_shared_secret;

}

disk {

on-io-error detach;

no-disk-barrier;

no-disk-flushes;

}

syncer {

rate 25M;

al-extents 3389;

csums-alg md5;

verify-alg md5;

c-max-rate 100M;

Istituto di Cristallografia Smart eLab ISSN 2282-2259 3

c-min-rate 10M;

}

on nfs-1 {

device /dev/drbd0;

disk /dev/sdb;

flexible-meta-disk internal;

address 10.10.73.26:7788;

}

on nfs-2 {

device /dev/drbd0;

disk /dev/sdb;

flexible-meta-disk internal;

address 10.10.73.27:7788;

}

In this example we define a resource called r0 synched semi-synchronously (B type). It consist in two hard disk being synched on
the machines (nfs-1 and nfs-2). On both nodes the disk used is /dev/sdb and the block device exposed by DRBD is /dev/drbd0. We
define an internal flexible meta-disk, storing metadata of DRBD inside the replication block device. We also tuned some parameters
about the syncer, in particular we set the maximum transfer rate in 25 MB/s, and we choose md5 as the checksum and verify
algorithm. Others parameters are in the net section and those needs to be tuned to your particular workload.

We then initialize the meta-disk area. We need to do this only on one node.

[root@nfs-01 etc]# drbdadm create-md repdata

About to create a new drbd meta data block on /dev/sdb.

. ==> This might destroy existing data! <==

Do you want to proceed? [need to type ’yes’ to confirm] yes

Creating meta data... initialising activity log NOT initialized bitmap (256 KB) New drbd meta

data block sucessfully created.

After that we can start DRBD on both nodes. Just type

service drbd start

If we check DRBD status (drbd-overview command is a beautiful wrapper that show us info) we’ll see that both nodes are secondary,
and not synched.

[root@nfs-01 /root]# drbd-overview

0:r0 Connected Secondary/Secondary Inconsistent/Inconsistent A r-----

We shall promote one of the nodes as primary (we will use nfs-01)

[root@nfs-01 /root]# drbdadm -- --overwrite-data-of-peer primary r0

0:r0 Synctarget Primary/Secondary Inconsistent/Inconsistent A r-----

After a while a drbd-overview will show

[root@nfs-01 /root]# drbd-overview

0:r0 Connected Primary/Secondary UpToDate/UpToDate A r-----

This will informs us that the LUNs are synched. Take into account that we didn’t specify a runlevel for autostart of DRBD, and
that’s normal. In fact the DRBD resource will be managed by the cluster suite. More informations on clustering tools is available on
section VII.

5 File System Layer
We now reached our first goal: we have two different LUNs synched. Every write operation we do on nfs-01 will be replicated

to the nfs-02 node. But that’s just a block device, we need a file system over that to be actually useful. Our file system of choice
was ZFS. We wrote a small white paper about why ZFS is the best filesystem to be used for data storage at this time, so we won’t
speak about its features, but we’ll focus about how to integrate it in our system. Although it is possible to use ZFS in user space
trough FUSE there are serious drawbacks in performances so the suggested operating method utilizes kernel loadable modules.
Installation is simplified due the presence of ppa repository for Ubuntu. Installation steps are as follow:

[root@nfs-01 /root]# apt-get install python-software-properties

[root@nfs-01 /root]# add-apt-repository ppa:zfs-native/stable

[root@nfs-01 /root]# apt-get update

[root@nfs-01 /root]# apt-get install ubuntu-zfs

4 Smart eLab ISSN 2282-2259 Istituto di Cristallografia

After executing this commands we are ready to use ZFS on Linux. We can load the module through modprobe, but if the OS detects
a ZFS volume on the disks will try to autoload the module automatically. There’s a small caveat on this: since DRBD will replicate
the volume in Active/Passive mode the secondary machine will actually see a ZFS disk pool and will try to load the module. This
will fail due the read only DRBD property on the secondary and will cause some problems in the stack. We must exclude ZFS
module from the autoload list. The scripts that manage the cluster resources will be on charge of loading/unloading it. To avoid
the auto load of the module we simply add the following lines on the /etc/modprobe.d/blacklist.conf

blacklist zfs

install zfs /bin/false

The first inhibits the autoload of the module, the second specify that ZFS will need to be loaded only through an insmod command
and not through modprobe.

Usual rules for ZFS administration apply. Since the block device underlying ZFS is replicated, a ZFS command will propagate to
the second node, so this actions must only be done on the active ZFS node.

We start creating a ZFS pool and referencing it with the correct block device.

zpool create tank /dev/drbd0

Since /dev/drbd0 is our replicated block device it is the correct one to be passed to zpool as an argument. Tank is a common name
for a zpool, but it’s your choice. Creating a pool automatically creates a ZFS filesystem with the same name, but in order to ease
administration it’s good practice to create nested ZFS filesystem inside the pool.

zfs create tank/share1

Here we command ZFS to create a nested filesystem inside the tank pool, and we call it share1. That’s particularly useful because
you can change some ZFS attributes (compression for example) on the single filesystem, rather than the pool. It also helps you
managing different snapshots policy pool based.

One of the most important tune to make to ZFS is to disable the atime option of the filesystem. With atime enabled every time
you access a file the filesystem updated the metadata regarding its last access timestamp. This lead to a write operation for every
file read, quickly degrading the performances of the system. You can completely disable the atime property with zfs set atime=off
or use a lighter timestamp called relatime. With zfs set atime=relatime you are telling the filesystem that you want an update of the
last access timestamp, but just one every 24 hours.

Please note that we avoid to use ZFS capabilities of auto-exporting filesystems via NFS. We decided to manually export them
via the usual linux tools. That’s because we need more fine grained control on the events: the clustering tools are in charge of
orchestrating everything. Since we blacklist the ZFS module in the modprobe the clustering tools must me take charge of loading
it, we’ll cover this kind of details in section 7.4.

Take into account that ZFS is not a clustered filesystem: this mean you can’t have ZFS mounted on both the server at the same
time serving the same data.

6 Share Access Layer

In order to access the replicated resource we just created
from remote machines we choose to use the nfs server. NFS
was one of the most used protocols to share files between ma-
chines in unix environment: it requires few dependencies and
the protocol is old but reliable. The NFS server can be installed
through apt-get install nfs-kernel-server. If you are using NF-
Sv3 configuration is limited to the /etc/exports file, where you
can add the directory you want to export and the ACL and op-
tions for them. NFSv4 need an additional component, named
idmap, which is a daemon that map remote uid to local ones.
We don’t need to configure the /etc/exports at this time nor we
need to enable nfs server at startup. The orchestration tools are
in charge to dynamically load the kernel modules and update
the exports list.

The system is designed to offer high availability and trans-
parent migration from one node to the other. NFS clients
whose operations were on the wire will have trouble recon-
necting timely. We need to adjust two parameters to lower
the grace time of NFS and smooth the failover. There para-
meters are nfsv4leasetime and nfsv4gracetime, both tunable in
/proc/fs/nfsd

7 Orchestration
All the orchestration is done by corosync/pacemaker. Coro-

sync in the software that manages cluster membership of the
nodes, determining quorum and promoting/demoting nodes.
Pacemaker is the resource manager that starts and stops the
various services and provide fencing agents for unresponsive
hosts. Corosync and pacemaker are often called together “clu-
ster tools”. Configuring them was usually done through config
files, but a brilliant project called “Linux cluster manager con-
sole” allows to use a GUI to install and configure the cluster
tools. You’ll find the relevant configuration files in Appendix.
The use of LCMC is pretty straightforward. Pacemaker actually
performs the operations through agents. These agents are often
bash scripts with certain exit codes. Two main kind of agents
exists: LSB and OCF. LSB are considered legacy modules pro-
vided to maintain compatibility, OCF is the new format and is
becoming pretty popular and more manageable.

7.1 Corosync / Pacemaker

Corosync configuration in its simplest form is limited to de-
claration of IP address, network card to be used to cluster
communications and multicast address.

Istituto di Cristallografia Smart eLab ISSN 2282-2259 5

Pacemaker allow us to configure certain kind of relationship
between resources such as “start A before B”. This is a core
feature to load the various components: we need a bottom up
approach when starting resources, and vice-versa when stop-
ping them. LCMC shows a nice view with the relationship of
the resources, and allows to configure the resource agents we
need for getting the job done.

Caveat: a cluster should be configured to start resources only
when the appropriate fencing agents are started to avoid the ri-
sk of split brain situations which can be very difficult to recover
without data loss.

7.2 Fencing agent

Fencing agents are in charge of killing a node in case it
doesn’t answer to keepalives: usually they use STONITH ap-
proach via IPMI or remote power switches. Since we are in
a virtual environment STONITH is done via VMware api calls.
In case of VMware VCenter there is a well know agent: sto-
nith_external/vcenter. If you are using an unlicensed version of
ESXi you can rely on ssh to poweroff the guests. You can find
an example of ESXi fencing agent in the Appendix. If fencing
agents fail to start for any reason, your cluster won’t be able to
start other resources. For debugging or devel purpose you can
override through the parameter stonith_enabled. Please note
that operating a cluster without stonith agents can lead to split
brain situations and consequential data loss.

7.3 Block device agent

The block device agent in this configuration is ocf_drbd. It’s a
master/slave agent that ensures no two nodes are running the
same drbd resource as primary. The only parameter this agent
takes is the name of drbd resource. In our case it is r0. All the
following agents run on primary node.

7.4 Filesystem agent

After the block device appears in the operating systems we
need to mount the filesystem that it contains: in our case ZFS.
We haven’t found an ocf zfs agent, we ended writing our own.
We need to implement the action start / stop / check. For start
action what we need to do is manually load the ZFS module
that we blacklisted before and running a zpool import. For stop
action we need to zpool export the pool and remove the module
from ram. For check action we can rely on zpool list. At this
stage the agent takes two parameters: device to be mounted
and mount point. The zpool name is hardcoded as tank.

7.5 NFS Server Agent

Nothing much to say here. A predefined ocf agent named nfs-
server manage the task of running and stopping the NFS kernel
server. As parameter it takes the script to start the nfs daemon.

7.6 Exports agent

After the NFS server is started we can describe various ex-
ports directory. An OCF agent named exportfs is available for
such task. It takes as parameters the client ACLs, local share
name, a unique fsid within the cluster for that share and the
export options, if any.

7.7 Virtual IP agent

Clients don’t connect to the real IP of the servers, because
they have no clue which NFS server is primary. We define a last
resource, a Virtual IP assigned to the primary server. The OCF
agent is called IPAddr2, and the only mandatory parameter is
the IP address you want to use. You can also specify a netmask
if needed. This IP is what the client will use to access the nfs
share.

7.8 First Start

At first start corosync form the cluster, assign one of the no-
des as DC (Designated Controller) and check for pacemaker
configuration. Then fencing agents are started and checked for
status. If they are ok the next agent kicks in, starting drbd on
both nodes, promoting one to Primary and the other as secon-
dary. Sync starts here if needed. Only on the primary node
as soon block device is confirmed to be available, filesystem is
mounted, nfs kernel started, directory exported and finally IP
address assigned to the primary node. If any of the steps fails
to complete pacemaker perform a rollback taking down the re-
sources on the primary node until block device layer. Then it
perform a role switch on the nodes: the primary is demoted to
secondary and the secondary promoted to primary. After it tries
to perform all start actions on the new primary.

7.9 Failover

If failover is requested pacemaker first tries to take down all
the services on the primary node. If stopping the services is
successful it performs role switch on the nodes and try to start
all the resources to the other node, which is primary at this
point. If during the stop of the services on the old primary a
certain timeout is met, or if them fails with error the cluster
tools proceed to fence the unresponsive server. Often this mean
a complete poweroff/poweron cycle of the server.

8 Monitoring

Even if cluster can perform automatic failover is good practi-
ce to monitor the server to get instant insight of what is happe-
ning in the system. The items we want to monitor are the sy-
stem resources of the servers, the status of pacemaker resources
and some statistics about performance of nfs. We installed the
zabbix agent throught apt-get to get the basic stats of the server
and we also added several custom checks to enable the monito-
ring of the pacemaker resources. We wrote a simple bash script
to check the various services and added the zabbix_agent.conf
the relevant keys. You can find both the script and the zabbix
keys in the Appendix.

9 Backup

While operating a cluster the administrator must take into
account that the secondary server is the replacement, not the
backup. Secondary server are there to achieve HA, but a num-
ber of things can go wrong. Due the semi-synchronous natu-
re of this setup both block devices are actually mirroring each
other, like a RAID-1. So we need other strategies to achieve
solid backup.

6 Smart eLab ISSN 2282-2259 Istituto di Cristallografia

9.1 Snapshots
When we faced the choice of the filesystem we agreed on

one thing: filesystem snapshot is just too useful to not have
it. And this influenced heavily our choice in favor of ZFS. Its
copy-on-write mechanism allows to take snapshots in nearly no
time. More important snapshots aren’t really occupying space
on disks: they are just thin copies. And they are easily accessi-
ble through the hidden .zfs directory where the admin can just
inspect or copy the files. What we needed was a system that au-
tomates the snapshots of the filesystem and rotates the backup
in a way that respect our policy. We found in zfs-auto-backup
the solution of this problem. This handful scrIPt (even availa-
ble through apt-get) allows to take snapshot while defining a
retention policy. We keep 4 quarter snapshot, 24 hourly snap-
shot, 30 daily, 4 weekly, 12 monthly and 5 yearly. If the system
becomes bloated by the yearly snapshots we can easily offload
them as explained in the next section.

9.2 Filesystem send
The zfs send command allow us to stream the whole filesy-

stem to stdout. The zfs recv command takes a filesystem stream
from stdin and store it in the designed pool. The capability of
sending a filesystem, or just the incremental snapshots of it, is
another powerful feature of ZFS and it comes extremely handy
for backup strategies. We can offload old snapshots just sending
them over the network to another machine that is ZFS capable.
Due the fact that zfs send/recv use standard descriptors we can
just pipe through an ssh connection. An example of backup is

zfs send tank@snap1

| ssh host2 zfs recv tank/backup

ZFS properties can be different on destination. For example
we activate compression on the destination filesystem. Sending
data out of the cluster solves the problem of backup. We use
the local snapshot for common activities, such restoring dele-
ted files or accessing old versions of them. If the cluster has
problem, or if we need do some heavy I/O load like a search
in the whole snapshots for a certain string we can offload the
work on the backup server which normally doesn’t require to
be responsive. A forked version of zfs-auto-backup feature auto
send of snapshot to a remote host.

10 Conclusion
The work described in this technical report was made in or-

der to obtain a storage system for general purpose in high avai-
lability environment, assuming multiple and contemporary ac-
cess to it. The result obtained required a big effort in deploying
it, resulting in very high probability of human error when ma-
naging it, furthermore we accepted some trade-off that limit the
overall system performance, resulting in slow file access. Howe-
ver, the conceptual effort and the experience have highlighted
some of the strengths and weaknesses of this system. Scalabi-
lity is delegated to the iSCSI layer, growing the LUN results in
the capability to immediately grow the file system, and allows,
thanks to the adoption of ZFS, automatic and cost-free snap-
shot mechanisms and consequently enables granular recovery
of individual files starting from the selected snapshot. Future
works aimed at exploiting the benefits of distributed and scala-
ble storage systems, such as CEPH, continuing to enjoy benefits
of a file system like ZFS in the backup system.

Glossary

ISCSI: Internet Small Computer Systems Interface
DRBD: Distributed Replicated Block Device
NFS: Network File System
SPOF: Single Point of Failure
ZFS: Zettabyte File System
LUN: Logical Unit Number (SCSI devices)
LCMC: Linux Cluster Manager Console
STONITH: Shoot the Other Node in the Head

(computer clustering)
COW: Copy-on-write
IPMI: Intelligent Platform Management Interface

Appendix
All the configuration files needed in this project can be found

at http://code.sra.mlib.cnr.it/andlor/nfs

References
1 J. Sartran, K. Meth, C. Sapuntzakis, C. M., Z. E., Inter-

net Small Computer Systems Interface (iSCSI), Request for
Comments: 3720.

2 S. M. Inc., Network. File System Protocol Specification
(NFS), Request for Comments: 1094. March 1989.

3 B. Callaghan, B. Pawlowski, P. Staubach, NFS Version 3
Protocol Specification, Request for Comments: 1813. June
1995.

4 S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, D. Noveck, NFS version 4 Protocol, Request for
Comments: 3530. April 2003.

5 A. Galloway, Things about zfs that nobody told you. jul 2011.
6 A. Traeger, E. Zadok, N. Joukov, C. P. Wright, A nine year

study of file system and storage benchmarking, Trans. Sto-
rage 4 (2) (2008) 5:1–5:56. doi:10.1145/1367829.

1367831.
7 Solaris Internals wiki, ZFS Best Practice Guide.

Istituto di Cristallografia Smart eLab ISSN 2282-2259 7

http://code.sra.mlib.cnr.it/andlor/nfs
http://dx.doi.org/10.1145/1367829.1367831
http://dx.doi.org/10.1145/1367829.1367831

	INTRODUCTION
	Overview
	Hardware
	Network Layer
	Block storage layer
	Replication system layer
	File system layer
	Shared access layer
	Orchestration
	Monitoring
	Backup

	Hardware
	Block Storage Layer
	Replication System Layer
	File System Layer
	Share Access Layer
	Orchestration
	Corosync / Pacemaker
	Fencing agent
	Block device agent
	Filesystem agent
	NFS Server Agent
	Exports agent
	Virtual IP agent
	First Start
	Failover

	Monitoring
	Backup
	Snapshots
	Filesystem send

	Conclusion

