Conference

New insight into the physiological activities of Amyloid Beta monomers.

Stefania Zimbone,^{*a*,*} Irene Monaco,^{*a*} Fiorenza Gianì,^{*a,b*} Giuseppe Pandini,^{*b*} Agata G. Copani,^{*a,c*} Maria Laura Giuffrida,^{*a*} Enrico Rizzarelli.^{*a,d*}

Alzheimer's disease (AD) is one of the most common form of dementia in the elderly, characterized by a progressive neurodegeneration associated with synaptic dysfunction, pathological accumulation of β -amyloid (A β) in plaques, and neuronal loss. The self-association of A β monomers into soluble oligomers seems to be crucial for the development of neurotoxicity.¹

Some of the toxic effects of $A\beta$ are mediated by its adverse effect on neurotrophic factor expressions. In particular, $A\beta$ oligomers have been found to decrease both phosphorylated CREB and BDNF mRNA in the neuroblastoma cell line, SH-SY5Y, suggesting that oligomeric $A\beta$ could compromise neuronal functions in AD by downregulating BDNF.² Accordingly, phosphorylated CREB and CREB-regulated BDNF are recently shown to be reduced in the brain of AD patients and Tg2576 mice.³

We previously reported a neuroprotective activity of monomeric A β involving the activation of a PI3K/Akt survival pathway.⁴ Here we demonstrate that A β monomers are specifically able to activate CREB, a converging point for mechanisms and pathways involved in memory formation.⁵ Our data suggest a new model whereby A β monomers may preserve cognitive decline.

References

- 1 D. M. Walsh, D. J. Selkoe, Aβ Oligomers a decade of discovery, Journal of Neurochemistry 101 (5) (2007) 1172–1184. doi:10.1111/j.1471-4159.2006.04426.x.
- 2 D. J. Garzon, M. Fahnestock, Oligomeric Amyloid Decreases Basal Levels of Brain-Derived Neurotrophic factor (BDNF) mRNA via Specific Downregulation of BDNF Transcripts IV and V in Differentiated Human Neuroblastoma Cells, Journal of Neuroscience 27 (10) (2007) 2628–2635. doi:10.1523/JNEUROSCI.5053-06.2007.
- 3 S. Pugazhenthi, M. Wang, S. Pham, C.-I. Sze, C. B. Eckman, Downregulation of CREB expression in Alzheimer's brain and in Aβ-treated rat hippocampal neurons, Molecular neurodegeneration 6 (1) (2011) 60. doi:10.1186/ 1750-1326-6-60.
- 4 M. L. Giuffrida, F. Caraci, B. Pignataro, S. Cataldo, P. De Bona, V. Bruno, G. Molinaro, G. Pappalardo, A. Messina, A. Palmigiano, D. Garozzo, F. Nicoletti, E. Rizzarelli, A. Copani, β-Amyloid Monomers Are Neuroprotective, Journal of Neuroscience 29 (34) (2009) 10582–10587. doi:10.1523/JNEUROSCI.1736-09.2009.
- 5 A. F. Teich, R. E. Nicholls, D. Puzzo, J. Fiorito, R. Purgatorio, O. Arancio, Synaptic therapy in Alzheimer's disease: a CREB-centric approach, Neurotherapeutics 12 (1) (2015) 29–41. doi:10.1007/s13311-014-0327-5.

^a CNR - Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy.

^b Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, via Palermo 636, 95122 Catania, Italy.

^c Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.

^d Department of Chemical Sciences, University of Catania, Viale A. Doria 6,95125 Catania, Italy.

Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 Internazionale

[†] oral communication at 1 st Conference on Crystallography, Structural Chemistry and Biosystems, (Catania) 04-06/10/2021